理解 raft 算法

raft 算法是一种共识算法,其解决的分布式环境中的数据一致性的问题

leader election

在 raft 算法中,每个节点有三种状态:

  • Follower
  • Candidate
  • Leader

所有的节点初始都是 follower ,如果 follower 节点没有收到任何 leader 节点的消息,这些节点将变成 candidate ,candidate 节点开始向其他节点请求投票,节点会返回投票信息,如果一个 candidate 获得所有节点中的多数投票,则他会变成 leader 状态,这个过程称之为 leader election

在 raft 中有两个 timeout 设置控制着 election 的进行。

第一个是 election timeout,意思是 follower 要等待成为 candidate 的时间,这个时间是一个介于 150ms 到 300ms 的值,这个时间结束之后 follower 变成 candidate 开始选举,首先是自己对自己投票,然后向其他节点请求投票,如果接收节点在收到投票请求时还没有参与过投票,那么他会把票投给这个请求投票的 candidate,然后重置自身的 election timeout,一旦一个 candidate 拥有所有节点中的大多数投票,他变成一个 leader。

第二个是 heartbeat timeout,一旦一个 candidate 成为 leader,他开始向其他 follower 发送 append entries,这些消息发送的频率是通过 heartbeat timeout 指定,follower 会响应每条的 append entry,整个 election 会一直进行直到 follower 停止接受 heartbeat 并且变成 candidate 开始下一轮 election。

假设 leader 故障了,follower 不再收到 heartbeats,新一轮 election 开始,整个过程重复上述步骤。

需要节点中的多数节点的投票才能成为 leader 保证了在每轮选举中只有一个 leader 可以胜出,如果一轮选举中有两个节点同时成为 candidate 将会导致 split vote 发生,如果此时两个 candidate 都收到了相同的票数,他们重置 election timeout 重新开启新一轮选举。

log replication

leader 成功选举之后,之后 client 的请求都先经过 leader,每个请求的更改以日志的形势保存在 leader 节点,但这些更改是 uncommitted 状态,为了对这些更改进行提交,leader 首先 replicate 这些更改到 follower,等到 follower 中的大部分提交之后才会 commit 这些更改,commit 之后通知 follower 更改已经 commited,这个系统现在达到了一致的状态,这个过程称之为 log replication

network partitions

raft 算法可以应对 network partitions。

比如由于网络分区导致了 C、D、E 和 A、B 隔离,各自分区中会重新开始选举形各自形成新的 leader

在各自分区之内,各自 leader 会收到不同的 client 发送的请求,由于在 B 分区内,leader 无法获得多数节点的投票,因而 leader B 上发生的更改不会被提交,等网络分区修复之后,A 和 B 的 term 比较小,他们会自动下线,回滚之前的提交,等待新的 leader 发送 hearbeat

参考

Zookeeper 单一视图

Zookeeper 集群由多个节点构成,写入数据时只要多数节点确认就算成功,那些没有确认的节点此时存放的就是老数据。Zookeeper 的“单一视图(single system image)”保证说的是客户端如果读到了新数据,则再也不会读到老数据。如果重新连接连上了老的节点,怎么能保证不会读到老的数据?

真相很直接很残酷:老的节点会拒绝新客户端的连接。

zxid

Zookeeper 会为每个消息打上递增的 zxid(zookeeper transactioin id),客户端会维护一个 lastZxid,存放最后一次读取数据对应的 zxid,当客户端连接时,节点会判断 lastZxid 是不是比自己的 zxid 更大,如果是,说明节点的数据比客户端老,拒绝连接。

参考文章
https://www.cnblogs.com/ucarinc/p/8068409.html

一致性Hash算法背景

一致性哈希算法在1997年由麻省理工学院的Karger等人在解决分布式Cache中提出的,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。一致性哈希修正了CARP使用的简单哈希算法带来的问题,使得DHT可以在P2P环境中真正得到应用。

但现在一致性hash算法在分布式系统中也得到了广泛应用,研究过memcached缓存数据库的人都知道,memcached服务器端本身不提供分布式cache的一致性,而是由客户端来提供,具体在计算一致性hash时采用如下步骤:

  1. 首先求出memcached服务器(节点)的哈希值,并将其配置到0~232的圆(continuum)上。
  2. 然后采用同样的方法求出存储数据的键的哈希值,并映射到相同的圆上。
  3. 然后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个服务器上。如果超过232仍然找不到服务器,就会保存到第一台memcached服务器上。

 

从上图的状态中添加一台memcached服务器。余数分布式算法由于保存键的服务器会发生巨大变化而影响缓存的命中率,但Consistent Hashing中,只有在园(continuum)上增加服务器的地点逆时针方向的第一台服务器上的键会受到影响,如下图所示:

一致性Hash性质

考虑到分布式系统每个节点都有可能失效,并且新的节点很可能动态的增加进来,如何保证当系统的节点数目发生变化时仍然能够对外提供良好的服务,这是值得考虑的,尤其实在设计分布式缓存系统时,如果某台服务器失效,对于整个系统来说如果不采用合适的算法来保证一致性,那么缓存于系统中的所有数据都可能会失效(即由于系统节点数目变少,客户端在请求某一对象时需要重新计算其hash值(通常与系统中的节点数目有关),由于hash值已经改变,所以很可能找不到保存该对象的服务器节点),因此一致性hash就显得至关重要,良好的分布式cahce系统中的一致性hash算法应该满足以下几个方面:

  • 平衡性(Balance)

平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。很多哈希算法都能够满足这一条件。

  • 单调性(Monotonicity)

单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲区加入到系统中,那么哈希的结果应能够保证原有已分配的内容可以被映射到新的缓冲区中去,而不会被映射到旧的缓冲集合中的其他缓冲区。简单的哈希算法往往不能满足单调性的要求,如最简单的线性哈希:x = (ax + b) mod (P),在上式中,P表示全部缓冲的大小。不难看出,当缓冲大小发生变化时(从P1到P2),原来所有的哈希结果均会发生变化,从而不满足单调性的要求。哈希结果的变化意味着当缓冲空间发生变化时,所有的映射关系需要在系统内全部更新。而在P2P系统内,缓冲的变化等价于Peer加入或退出系统,这一情况在P2P系统中会频繁发生,因此会带来极大计算和传输负荷。单调性就是要求哈希算法能够应对这种情况。

  • 分散性(Spread)

在分布式环境中,终端有可能看不到所有的缓冲,而是只能看到其中的一部分。当终端希望通过哈希过程将内容映射到缓冲上时,由于不同终端所见的缓冲范围有可能不同,从而导致哈希的结果不一致,最终的结果是相同的内容被不同的终端映射到不同的缓冲区中。这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。

  • 负载(Load)

负载问题实际上是从另一个角度看待分散性问题。既然不同的终端可能将相同的内容映射到不同的缓冲区中,那么对于一个特定的缓冲区而言,也可能被不同的用户映射为不同的内容。与分散性一样,这种情况也是应当避免的,因此好的哈希算法应能够尽量降低缓冲的负荷。

  • 平滑性(Smoothness)

平滑性是指缓存服务器的数目平滑改变和缓存对象的平滑改变是一致的。

原理

基本概念

一致性哈希算法(Consistent Hashing)最早在论文《Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web》中被提出。简单来说,一致性哈希将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形),整个哈希空间环如下:

 

 

整个空间按顺时针方向组织。0和232-1在零点中方向重合。

下一步将各个服务器使用Hash进行一个哈希,具体可以选择服务器的ip或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置,这里假设将上文中四台服务器使用ip地址哈希后在环空间的位置如下:

 

 

接下来使用如下算法定位数据访问到相应服务器:将数据key使用相同的函数Hash计算出哈希值,并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器。

例如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:

 

 

根据一致性哈希算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。

下面分析一致性哈希算法的容错性和可扩展性。现假设Node C不幸宕机,可以看到此时对象A、B、D不会受到影响,只有C对象被重定位到Node D。一般的,在一致性哈希算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。

下面考虑另外一种情况,如果在系统中增加一台服务器Node X,如下图所示:

 

 

此时对象Object A、B、D不受影响,只有对象C需要重定位到新的Node X 。一般的,在一致性哈希算法中,如果增加一台服务器,则受影响的数据仅仅是新服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它数据也不会受到影响。

综上所述,一致性哈希算法对于节点的增减都只需重定位环空间中的一小部分数据,具有较好的容错性和可扩展性。

另外,一致性哈希算法在服务节点太少时,容易因为节点分部不均匀而造成数据倾斜问题。例如系统中只有两台服务器,其环分布如下,

 

 

此时必然造成大量数据集中到Node A上,而只有极少量会定位到Node B上。为了解决这种数据倾斜问题,一致性哈希算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希,每个计算结果位置都放置一个此服务节点,称为虚拟节点。具体做法可以在服务器ip或主机名的后面增加编号来实现。例如上面的情况,可以为每台服务器计算三个虚拟节点,于是可以分别计算 “Node A#1”、“Node A#2”、“Node A#3”、“Node B#1”、“Node B#2”、“Node B#3”的哈希值,于是形成六个虚拟节点:

 

 

同时数据定位算法不变,只是多了一步虚拟节点到实际节点的映射,例如定位到“Node A#1”、“Node A#2”、“Node A#3”三个虚拟节点的数据均定位到Node A上。这样就解决了服务节点少时数据倾斜的问题。在实际应用中,通常将虚拟节点数设置为32甚至更大,因此即使很少的服务节点也能做到相对均匀的数据分布。

相关实现

https://en.wikipedia.org/wiki/Consistent_hashing

原文